
@TillKorten 1

Python Algorithms
conditions, loops, functions

Till Korten, Robert Haase

Using material from Benoit Lombardot, Scientific Computing Facility, MPI CBG

August 2023

@TillKorten 2

Data science workflows rarely look like this

9

@TillKorten 3

Data science workflows rather look like this

1 8
5 9?

Yes

No

Yes

No

?

Yes

No

Conditional statement

@TillKorten 4

Example use cases for conditional statements

• Check if pre-requisites are met

• Check if data has the right format

• Check if processing results are within an expected range

• Check for errors
Analyse
image

?

Exit

Load
data

Yes

No

Is data
an

image?

Yes

No

@TillKorten 5

Conditionals are implemented with the if statement

• Depending on a condition, some lines of code are executed or not.

load image

if is_image :
do something
with the image

// save results

@TillKorten 6

load image

if is_image :
do something
with the image

// save results

Conditionals are implemented with the if statement

• Depending on a condition, some lines of code are executed or not.

@TillKorten 7

if / elif / else: choose from several alternatives

• Depending on conditions, only one of several possible blocks is computed
• Indentation is used to mark where a block starts and ends.
• Indentation helps reading blocks,

if is_image :
 # do something
 # with the image

else :
 # print an
 # error message

close image file

if is_tiff_image:
 # do something with tiff

elif is_jpg_image :
 # do something if a = 1

else :
 # print error message

close image file

@TillKorten 8

Comparison operators always have True (1) or False (0) as result

Operator Description Example

<, <= less than, less than or equal to a < b

>, >= greater than, greater than or equal to a > b

== equal to a == b

!= not equal to a != 1

initialise program
image_size = 99.5

evaluate quality
if image_size > 99.9 :

print("Everything is fine.")
else :

print("We need a larger image!")

Note: These are
two equal signs!

‘We need a larger image!’

@TillKorten 9

Conditions can be combined with logic operators

• Logic operators always take conditions as operands and result in a condition.
• and
• or
• not

• Also combined conditions can be either True (1) or False (0).
initialise program
image_size = 99.9
number_of_images = 3

if image_size >= 99.9 and number_of_images > 5 :
print("The image is ok.")

initialise program
image_size = 99.9

if not image_size < 99.9 :
print("The image is ok.")

‘The image is ok.’

@TillKorten 10

The in statement: Checking contents of lists
initialise program
my_list = [1, 5, 7, 8]
item = 3

if item in my_list :
print("The item is in the list.")

else :
print("There is no”, item, "in", my_list)

initialise program
my_list = [1, 5, 7, 8]
item = 3

if item not in my_list :
print("There is no”, item, "in", my_list)

else :
print("The item is in the list.")

• Quite intuitive, isn’t it?

‘There is no 3 in [1, 5, 7, 8]’

‘There is no 3 in [1, 5, 7, 8]’

@TillKorten 11

Rules for readable code

• Every command belongs on its own line

• Insert empty lines to separate important processing steps

• Put spaces between operators and operands, because:

This is easier to read thanthat,orisnt’it?

• Indent every conditional block (if/else) using the TAB key
• Python actually enforces this rule: Indentation means

combining operations to a block

initialise program
a = 5;b = 3;c = 8
initialise program
a = 5
b = 3
c = 8

initialise program
a = 5
b = 3
c = 8

execute algorithm
d=(a+b)/c

evaluate result

initialise program
a = 5
b = 3
c = 8

execute algorithm
d = (a + b) / c

evaluate result

if a == 5 :
a = 3
print("Yin")

else :
a = 1
print("Yang")

if a == 5 :
a = 3
print("Yin")
else :
a = 1
print("Yang")

@TillKorten 12

To repeat actions, you run code in loops

?

Yes

No

Yes

No

Loop statement

?
Yes

No

?

@TillKorten 13

for: execute some lines of code for a number of times

• typically for all items in an array-like thing (lists, tuples, images)

open array of time-lapse images

for <image> in <image array> :
 # process image

save results

@TillKorten 14

for-in: Loop over items of a list

• Example list : range creates numbers on the
fly:
range(start, stop, step)

@TillKorten 15

for-loop syntax pitfalls

• Indent the code within the for loop
remember: indentation means
combining operations to a block

• Colon necessary

Don’t forget to
indent!

Don’t forget the
colon!

@TillKorten 16

Functions

• In case repetitive tasks appear that cannot be handled in a loop, custom functions are the way to go.
• Functions allow to re-use code in different contexts.
• Defined using the def keyword
• Indentation is crucial.
• Functions must be defined before called

• Definition • Call

name (parameters)

body commands

return statement
(optional)

name (parameters)

@TillKorten 17

Functions run a block of code with one command

• In case repetitive tasks appear that cannot be handled in a loop, custom functions are the way to go.
• Functions allow to re-use code in different contexts.
• Defined using the def keyword
• Indentation is crucial.
• Functions must be defined before called

• Definition • Call

@TillKorten 18

Keep it short and simple (KISS)

• Let’s assume we want to write a function that grades student exams
def grade_student_exams(points_achieved: int, total_points_in_exam: int) -> int:
percentage = points_achieved / total_points_in_exam * 100
if percentage > 95:
 grade = 1
elif percentage > 80:
 grade = 2
elif percentage > 60:
 grade = 3
elif percentage > 50:
 grade = 4
else:
 grade = 5
return grade

@TillKorten 19

Keep it short and simple (KISS)

• Now we want to extend that function to also grade pass/fail exams
def grade_student_exams(points_achieved: int, total_points_in_exam: int ,
pass_fail: bool = True) -> int:
percentage = points_achieved / total_points_in_exam * 100
if percentage > 95:
 grade = 1
elif percentage > 80:
 grade = 2
elif percentage > 60:
 grade = 3
elif percentage > 50:
 grade = 4
else:
 grade = 5
if pass_fail:
 if grade < 5:
 return True
 else:
 return False
else:
 return grade

This is rather messy:
It is not clear what the function returns
If pass_fail is False, we return an integer,
Otherwise a boolean.
Also, reading what the function does is difficult

@TillKorten 20

Keep it short and simple (KISS)

• If we split this into two, we get two nice short and simple functions again
def grade_student_exams(points_achieved: int, total_points_in_exam: int) -> int:
percentage = points_achieved / total_points_in_exam * 100
if percentage > 95:
 grade = 1
elif percentage > 80:
 grade = 2
elif percentage > 60:
 grade = 3
elif percentage > 50:
 grade = 4
else:
 grade = 5
return grade

def grade_pass_fail_exam(points_achieved: int, total_points_in_exam: int) -> bool:
grade = grade_student_exams(points_achieved, total_points_in_exam)
if grade < 5:
 return True
else:
 return False

@TillKorten 21

Document your functions to keep track of what they do

• Describe what the functions does and what the parameters are meant to be

• You can then later print the documentation with a ? if you can’t recall how a function works.

• Hint: most integrated development environments (=coding software) provide automatisms to create a
documentation template for your function. Look for autodocstring or similar.

@TillKorten 22

Summary

Today, you learned
• Python

• Conditions: if / elif / else
• Loops: for .. in / while / break / continue
• Functions: def

