2 Pol

Physics of Life
TU Dresden

Python Algorithms

conditions, loops, functions

Till Korten, Robert Haase

Using material from Benoit Lombardot, Scientific Computing Facility, MPI CBG

August 2023
YW @TillKorten

Data science workflows rarely look like this PoL

Physics of Life ¢ 4
TU Dresden e

Mooy

Y @TillKorten 2

Data science workflows rather look like this PolL

Physics of Life ¢ 4/
TU Dresden e

Conditional statement

Y @TillKorten 3

Example use cases for conditional statements PolL

Physics of Life o 4
TU Dresden e

Check if pre-requisites are met

Check if data has the right format

Check if processing results are within an expected range

Check for errors

Y @TillKorten 4

Conditionals are implemented with the i f statement PoL

Physics of Life o 4
TU Dresden e

* Depending on a condition, some lines of code are executed or not.

‘Ioad image
Cis_image

‘ F 00 something
with the image

lsave results

Y @TillKorten 5

Conditionals are implemented with the i f statement PoL

Physics of Life o 4
1 TU Dresden e

* Depending on a condition, some lines of code are executed or not.

‘Ioad image
Coimage 3

F 00 something
with the image

lsave results

Y @TillKorten 6

if /elif /else: choose from several alternatives PolL

TU Dresden

* Depending on conditions, only one of several possible blocks is computed
* Indentation is used to mark where a block starts and ends.

* Indentation helps reading blocks,

' '

if is tiff image:

if is image :
do something with tiff

‘ # do something

with the image
elif is jpg image :

else : ‘ # do something if a =1

print an
error message else :
print error message

close image file

|

x close image file

Y @TillKorten 7

Physics of Life ¢ —+

Comparison operators always have True (1) or False (0) as result PolL

Physics of Life .. .
TU Dresden e

initialise program In [1]: a = 4

image size = 99.5 if a =5
print("Hello world")

evaluate qualit
q Y Note: These are File "<ipython-input-1-13fb587c9332>", line 3

1f 1mage_s1ze > 99:9 2 | two equal signs! if a = 5:
print("Everything is fine.") A
else : SyntaxError: invalid syntax

print("We need a larger image

‘We need a larger image!’

Operator ___pscription _____|Bample __

<, <= less than, less than or equal to a >= greater than, greater than orequalto a>b
== equal to a==

I= not equal to al=1

Y @TillKorten 8

Conditions can be combined with logic operators PoL

Physics of Life o
TU Dresden ~

* Logic operators always take conditions as operands and result in a condition.
* and
* Oor
* not

* Also combined conditions can be either True (1) or False (0).

initialise program
image size = 99.9
number of images = 3

if image size >= 99.9 and number of images > 5
print("The image is ok.")

initialise program
image size = 99.9

if not image size < 99.9 :
print("The image is ok.")

‘The image is ok.'’

Y @TillKorten 9

The in statement: Checking contents of lists PoL

Physics of Life o 4
TU Dresden e

initialise program
my list = [1, 5, 7, 8]
item = 3

if item in my list :
print("The item is in the list.")
else :

print("There is no”, item, "in", my list)

‘There is no 3 in [1, 5, 7, 8]’

initialise program
my list = [1, 5, 7, 8]
item = 3
e Quite intuitive, isn’t it? o _ _
if 1tem not in my list
print ("There is no”, item, "in", my list)
else
print("The item is in the list.")

‘There is no 3 in [1, 5, 7, 8]’

Y @TillKorten 10

Rules for readable code PolL

Physics of Life ¢ 4
TU Dresden e

* Every command belongs on its own line

* Insert empty lines to separate important processing steps # initialise program
a=>5
b =3
c =8

* Put spaces between operators and operands, because: 2 enecte algorithe
d=(a+b) /c

evaluate result

This is easier to read thanthat,orisnt’it?

if a == 5 :
a =3
.. . . print("Yin")
* Indent every conditional block (if/else) using the TAB key S
* Python actually enforces this rule: Indentation means print("Yang")

combining operations to a block
Cell In [2], line 3
print("Yin")

A

IndentationError: expected an indented block

Y @TillKorten 11

To repeat actions, you run code in loops PolL

Physics of Life ¢ .
TU Dresden e

Loop statement

Y @TillKorten 12

for: execute some lines of code for a number of times PoL

Physics of Life o 4
TU Dresden e

* typically for all items in an array-like thing (lists, tuples, images)

l# open array of time-lapse images

for <image> in <image array> :
‘ # process image

l# save results

Y @TillKorten 13

for-in: Loop over items of a list PoL

Physics of Life o —~+4

TU Dresden

« Example list : range creates numbers on the
fly:
range (start, stop, step)
M animal set = ["Cat", "Dog", "Mouse"] M # for Loops
for 1 in range(o, 5):
for animal in animal set: print(1i)
print(animal) .
1
Cat 2
Dog -
Mouse 4

Y @TillKorten 14

for-loop syntax pitfalls PoL

Physics of Life o 4
TU Dresden e

* Indent the code within the for loop for Loops

remember: indentation means for i in range(e, 5):

combining operations to a block print(i)

File "<ipython-input-15-59c457ae@ac9>”, line 3

Don’t forget to print(i)
indent! "
IndentationError: expected an indented block

[J
Colon necessary # for Loops Don’t forget the

for 1 in range(9, 5) colon!
print(1i)

File "<ipython-input-13-23157c@ed137>", line 2
for i in range(@, 5)

A

SyntaxError: invalid syntax

Y @TillKorten 15

Functions PolL

Physics of Life o .
TU Dresden e

* In case repetitive tasks appear that cannot be handled in a loop, custom functions are the way to go.
* Functions allow to re-use code in different contexts.

* Defined using the keyword

* Indentation is crucial.

* Functions must be defined before called

e Definition e Call
def sum numbers(a, b): name (parameters) c = sum_numbers(4, 5)
print(c)
result = a + b body commands
=
return result retu!’n stlatement
(optional) sum_numbers(5, 6)
11

sum_numbers(3, 4)

Y @TillKorten 16 7

Functions run a block of code with one command PolL

1 TU Dresden

* In case repetitive tasks appear that cannot be handled in a loop, custom functions are the way to go.
* Functions allow to re-use code in different contexts.

* Defined using the def keyword

* Indentation is crucial.

* Functions must be defined before called

e Definition ‘- Call

def sum _numbers(a, b): C = sum_numbers(4,"5)
print(c)
result = a + b o

return result

Y @TillKorten 17

Physics of Life o —~+4

Keep it short and simple (KISS) PolL

Physics of Life ¢ .
TU Dresden e

* Let’s assume we want to write a function that grades student exams

def grade_student_exams(points_achieved: int, total_points_in_exam: int) —> int:
percentage = points_achieved / total_points_in_exam * 100
if percentage > 95:

grade = 1

elif percentage > 80:
grade = 2

elif percentage > 60:
grade = 3

elif percentage > 50:
grade = 4

else:
grade = 5

return grade

Y @TillKorten 18

Keep it short and simple (KISS) PolL

Physics of Life
TU Dresden

 Now we want to extend that function to also grade pass/fail exams

def grade_student_exams(points_achieved: int, total_points_in_exam: int ,
pass_fail: bool = True) —> int:

percentage = points_achieved / total_points_in_exam * 100

if percentage > 95:

grade = 1
elif percentage > 80:
grade = 2
elif percentage > 60: This is rather messy:
grade = 3 . .
elif percentage > 50: It is not clear what the function returns
else?’rade =4 If pass_failis False, we return an integer,
grade = 5 Otherwise a boolean.
1f pass_fail: Also, reading what the function does is difficult
if grade < 5:
return True
else:

return False
else:
return grade

Yy @TillKorten 19

Keep it short and simple (KISS) PolL

Physics of Life ¢ .
TU Dresden e

* |f we split this into two, we get two nice short and simple functions again

def grade_student_exams(points_achieved: int, total_points_in_exam: int) —> int:
percentage = points_achieved / total_points_in_exam * 100
if percentage > 95:

grade = 1

elif percentage > 80:
grade = 2

elif percentage > 60:
grade = 3

elif percentage > 50:
grade = 4

else:
grade = 5

return grade

def grade_pass_fail_exam(points_achieved: int, total_points_in_exam: int) —> bool:
grade = grade_student_exams(points_achieved, total_points_in_exam)
if grade < 5:
return True
else:
return False

Y @TillKorten 20

Document your functions to keep track of what they do PoL

TU Dresden

* Describe what the functions does and what the parameters are meant to be

def square(number):

Squares a number by multiplying it with itself and returns its result.

return number * number
* You can then later print the documentation with a ? if you can’t recall how a function works.

square?
Signature: square(number)

Docstring: Squares a number by multiplying it with itself and returns its
result.

e Hint: most integrated development environments (=coding software) provide automatisms to create a
documentation template for your function. Look for autodocstring or similar.

Y @TillKorten 21

Physics of Life o —~+4

Summary PoL

Physics of Life ¢ 4
TU Dresden e

Today, you learned

* Python
 Conditions: 1f /elif /else
 Loops: for .. in/while/break/continue
* Functions: def

Y @TillKorten 22

